Evaluate an EventNet Model#
Imports#
[ ]:
import os
import matplotlib.pyplot as plt
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
plt.rcParams["figure.figsize"] = (16, 8)
from insar_eventnet import inference
Initialize Input Variables#
In order to evaluate the model, we need a dataset made up of real interferogram examples with positives containing deformation events, and negatives containing no deformation events. The test_model function expects the dataset to be a directory which contains two directories called “Positives” and “Negatives” which contain their respective wrapped or unwrapped tifs. The tifs should be named as they are from ASF’s products.
Example_Dataset_Directory: Positives S1AA_20170313T015539_20170406T015540_VVP024_INT80_G_ueF_4F40_unw_phase.tif S1AA_20211113T141718_20211125T141717_VVP012_INT80_G_ueF_AE11_wrapped_phase.tif Negatives S1AA_20180320T125653_20180401T125653_VVP012_INT80_G_ueF_E415_wrapped_phase.tif S1BB_20210911T032038_20210923T032038_VVP012_INT80_G_ueF_64CA_wrapped_phase.tif
[ ]:
mask_model_path = "models/masking_model"
pres_model_path = "models/classification_model"
dataset_path = "SAR_DATA/"
tile_size = 512
crop_size = 512
save_images = False
output_dir = "SAR_DATA/Masks"
Run Evaluation Function#
[ ]:
inference.test_model(
mask_model_path,
pres_model_path,
dataset_path,
tile_size,
crop_size,
save_images,
output_dir,
)